Spatially restricted translation of the xCR1 mRNA in Xenopus embryos.

نویسندگان

  • Yan Zhang
  • Kara D Forinash
  • Jered McGivern
  • Brian Fritz
  • Karel Dorey
  • Michael D Sheets
چکیده

The xCR1 protein is a maternal determinant and cofactor for nodal signaling in vertebrate embryos. The xCR1 protein accumulates specifically in the animal cells of Xenopus embryos, but maternal xCR1 mRNA is distributed equally throughout all embryonic cells. Here, we show that vegetal cell-specific translational repression of xCR1 mRNA contributes to this spatially restricted accumulation of the xCR1 protein in Xenopus embryos. xCR1 mRNA was associated with polyribosomes in animal cells but not vegetal cells. A 351-nucleotide region of xCR1 mRNA's 3' untranslated region was sufficient to confer a spatially restricted pattern of translation to a luciferase reporter mRNA by repressing translation in vegetal cells. Repression depended upon the mRNA's 5' cap but not its 3' poly(A) tail. Furthermore, the region of xCR1 mRNA sufficient to confer vegetal cell-specific repression contained both Pumilio binding elements (PBEs) and binding sites for the CUG-BP1 protein. The PBEs and the CUG-BP1 sites were necessary but not sufficient for translation repression. Our studies of xCR1 mRNA document the first example of spatially regulated translation in controlling the asymmetric distribution of a maternal determinant in vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...

متن کامل

RNA sorting in Xenopus oocytes and embryos.

Cytoplasmic localization of mRNA molecules has emerged as a powerful mechanism for generating spatially restricted gene expression. This process is an important contributor to cell polarity in both somatic cells and oocytes, and can provide the basis for patterning during embryonic development. In vertebrates, this phenomenon is perhaps best documented in the frog, Xenopus laevis, where polarit...

متن کامل

Expression of the transcription factor Xvent-2 in Xenopus laevis embryogenesis

Till now the transcription factor Xvent-2 has been studied in Xenopus embryos only by the mRNA testing. We use immunochemical methods for testing of the Xvent-2 protein and gradient-centrifugation methods for estimation of activity of its mRNA. Our results show that the Xvent-2 protein is present in eggs and early embryos. The Xvent-2 mRNA is absent at any of these developmental stages. The maj...

متن کامل

Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis

Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...

متن کامل

Cell-autonomous signal transduction in the Xenopus egg Wnt/β-catenin pathway

Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β-catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage-stage blastomere, and the subcellular distribution of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 29 13  شماره 

صفحات  -

تاریخ انتشار 2009